

Routing Convergence

Jennifer Rexford Fall 2010 (TTh 1:30-2:50 in COS 302)

COS 561: Advanced Computer Networks http://www.cs.princeton.edu/courses/archive/fall10/cos561/

Intradomain Routing

Convergence

- Getting consistent routing information to all nodes -E.g., all nodes having the same link-state database
- Consistent forwarding after convergence
 - -All nodes have the same link-state database
 - -All nodes forward packets on shortest paths
 - The next router on the path forwards to the next hop

Transient Disruptions

- Detection delay
 - –A node does not detect a failed link immediately
 –... and forwards data packets into a "blackhole"
- Depends on timeout for detecting lost hellos
 –Or link media that can detect "loss of light"

Transient Disruptions

- Inconsistent link-state database
 - -Some routers know about failure before others
 - -The shortest paths are no longer consistent
 - -Can cause transient forwarding loops

Convergence Delay

- Sources of convergence delay
 - -Detection latency
 - -Flooding of link-state information
 - -Shortest-path computation
 - -Creating the forwarding table
- Performance during convergence period
 - -Lost packets due to blackholes and TTL expiry
 - -Looping packets consuming resources
 - -Out-of-order packets reaching the destination
- Very bad for VoIP, online gaming, and video

Reducing Convergence Delay

- Faster detection
 - -Smaller hello timers
 - -Link-layer technologies that can detect failures
- Faster flooding
 - Flooding immediately
 - -Sending link-state packets with high-priority
- Faster computation
 - -Faster processors on the routers
 - Incremental Dijkstra's algorithm
- Faster forwarding-table update
 - Data structures supporting incremental updates

Reducing Convergence Delay

- Weight tuning for planned maintenance
 - Gradually increase link weight
 - -Before taking down the link
- MPLS fast-reroute
 - -Backup paths to use when the primary path fails
 - -Local protection to circumvent a failed link

Interdomain Routing

Causes of BGP Routing Changes

- Topology changes
 - Equipment going up or down
 - Deployment of new routers or sessions
- BGP session failures
 - Due to equipment failures, maintenance, etc.
 - -Or, due to congestion on the physical path
- Changes in routing policy

 Changes in preferences in the routes
 Changes in whether the route is exported
- Persistent protocol oscillation
 - Conflicts between policies in different ASes

BGP Session Failure

- BGP runs over TCP
 - BGP only sends updates when changes occur

AS1

- TCP doesn't detect lost connectivity on its own
- Detecting a failure

 Keep-alive: 60 seconds
 Hold timer: 180 seconds
- Reacting to a failure
 - Discard all routes learned from the neighbor
 - Send new updates for any routes that change

AS₂

11

Routing Change: Path Exploration

- AS 1
 - -Delete the route (1,0)
 - -Switch to next route (1,2,0)
 - -Send route (1,2,0) to AS 3
- AS 3
 - -Sees (1,2,0) replace (1,0)
 - -Compares to route (2,0)
 - -Switches to using AS 2

- Initial situation
 - Destination 0 is alive
 - -All ASes use direct path
- When destination dies -All ASes lose direct path -All switch to longer paths -Eventually withdrawn
- E.g., AS 2 $-(2,0) \rightarrow (2,1,0)$ $-(2,1,0) \rightarrow (2,3,0)$ $-(2,3,0) \rightarrow (2,1,3,0)$ $-(2,1,3,0) \rightarrow \text{null}$

BGP Converges Slowly

- Path vector avoids count-to-infinity
 - -But, ASes still must explore many alternate paths
 - -... to find the highest-ranked path that is still available
- Fortunately, in practice
 - Most popular destinations have very stable BGP routes
 - -And most instability lies in a few unpopular destinations
- Still, lower BGP convergence delay is a goal
 - -Can be tens of seconds to a few minutes
 - High for important interactive applications
 - -... or even conventional application, like Web browsing

16

Beyond Faster Convergence

Research Ideas

- Modeling of routing convergence
 - -Bounds for BGP as function of topology and policy
 - Impact on timer configurations on convergence
- Much smaller timers for faster convergence

 Understand trade-off between convergence time and
 protocol overhead
- Distributed coordination of routing changes — Avoid loops and blackholes during convergence
- Failure carrying packets – Faster detection by piggybacking on data packets

Research Ideas

- Temporary backup routes in BGP — Have an alternate path through another AS
- Multipath routing to survive failures – Multiple paths, possibly computed in advance
 - -Load balancing over the currently-working paths
- Error-correction codes on multiple paths
 - -Spreading redundant traffic over multiple paths
 - -Reconstructing the traffic at the receiver

10

BGP Instability

Stable Paths Problem (SPP) Instance

- Node
 - -BGP-speaking router
 - -Node 0 is destination
- Edge
 - -BGP adjacency
- Permitted paths
 - Set of routes to 0 at each node
 - -Ranking of the paths

A Solution to a Stable Paths Problem

- Solution
 - -Path assignment per node
 - -Can be the "null" path
- If node u has path uwP
 -{u,w} is an edge in the graph
 - -Node w is assigned path wP
- Each node is assigned

 The highest ranked path consistent with assignment of its neighbors
 - A solution need not represent a shortest path tree, or a spanning tree.

Avoiding BGP Instability

- Detecting conflicting policies
 - Computationally expensive
 - Requires too much cooperation
- Detecting oscillations
 - Observing the repetitive BGP routing messages
- Restricted routing policies and topologies
 - Policies based on business relationships
 - Prefer paths through customers
 - Don't provide transit service to peers and providers
 - -No cycles of provider-customer relationship
- Getting rid of BGP 🙂